Facet['fæsɪt]很难翻译,只能靠例子来理解了。Solr作者Yonik Seeley也给出更为直接的名字:导航(Guided Navigation)、参数化查询(Paramatic Search)。
上面是比较直接的Faceted Search例子,品牌、产品特征、卖家,均是 Facet 。而Apple、Lenovo等品牌,就是 Facet values 或者说 Constraints ,而Facet values所带的统计值就是 Facet count/Constraint count 。
2 、Facet 使用
q = 超级本
facet = true facet.field = 产品特性 facet.field = 品牌 facet.field = 卖家
http://…/select?q=超级本&facet=true&wt=json
&facet.field=品牌&facet.field=产品特性&facet.field=卖家
也可以提交查询条件,设置fq(filter query)。
q = 电脑
facet = true fq = 价格:[8000 TO *] facet.mincount = 1 // fq将不符合的字段过滤后,会显示count为0 facet.field = 产品特性 facet.field = 品牌 facet.field = 卖家
http://…/select?q=超级本&facet=true&wt=json
&fq=价格:[8000 TO *]&facet.mincount=1
&facet.field=品牌&facet.field=产品特性&facet.field=卖家
"facet_counts": {"facet_fields": { "品牌": [ "Apple", 4, "Lenovo", 39 …] "产品特性": [ "显卡", 42, "酷睿", 38 …] …}}
如果用户选择了Apple这个分类,查询条件中需要添加另外一个fq查询条件,并移除Apple所在的facet.field。
http://…/select?q=超级本&facet=true&wt=json
&fq=价格:[8000 TO *]&fq=品牌:Apple&facet.mincount=1
&facet.field= 品牌 &facet.field=产品特性&facet.field=卖家
3 、Facet 参数
facet.prefix – 限制constaints的前缀
facet.mincount=0 – 限制constants count的最小返回值,默认为0
facet.sort=count – 排序的方式,根据count或者index
facet.offset=0 – 表示在当前排序情况下的偏移,可以做分页
facet.limit=100 – constraints返回的数目
facet.missing=false – 是否返回没有值的field
facet.date – Deprecated, use facet.range
facet.query
指定一个查询字符串作为Facet Constraint
facet.query = rank:[* TO 20]
facet.query = rank:[21 TO *]
"facet_counts": {"facet_fields": { "品牌": [ "Apple", 4, "Lenovo", 10 …] "产品特性": [ "显卡", 11, "酷睿", 20 …] …}}
facet.range
http://…/select?&facet=true
&facet.range=price
&facet.range.start=5000
&facet.range.end=8000
&facet.range.gap=1000
... ... 2 15
WARNING: range范围是左闭右开,[start, end)
facet.pivot
这个是Solr 4.0的新特性,pivot和facet一样难理解,还是用例子来讲吧。
Syntax: facet.pivot=field1,field2,field3...
e.g. facet.pivot=comment_user, grade
#docs | #docs grade:好 | #docs 等级:中 | #docs 等级:差 | |
comment_user:1 | 10 | 8 | 1 | 1 |
comment_user:2 | 20 | 18 | 2 | 0 |
comment_user:3 | 15 | 12 | 2 | 1 |
comment_user:4 | 18 | 15 | 2 | 1 |
"facet_counts":{"facet_pivot":{ "comment_user, grade ":[{ "field":"comment_user", "value":"1", "count":10, "pivot":[{ "field":"grade", "value":"好", "count":8}, { "field":"grade", "value":"中", "count":1}, { "field":"grade", "value":"差", "count":1}] }, { "field":" comment_user ", "value":"2", "count":20, "pivot":[{ …
没有pivot机制的话,要做到上面那点可能需要多次查询:
http://...q= comment&fq= grade:好&facet=true&facet.field=comment_user
http://...q=comment&fq=grade:中&facet=true&facet.field=comment_user
http://...q=comment&fq=grade:差&facet=true&facet.field=comment_user
Facet.pivot - Computes a Matrix of Constraint Counts across multiple Facet Fields. by Yonik Seeley.
上面那个解释很不错,只能理解不能翻译。
facet.pivot自己的理解,就是按照多个维度进行分组查询,以下是自己的实战代码,按照newsType,property两个维度统计:
public ListqueryNewsType( ReportQuery reportQuery) { HttpSolrServer solrServer = SolrServer.getInstance().getServer(); SolrQuery sQuery = new SolrQuery(); List list = new ArrayList (); try { String para = this.initReportQueryPara(reportQuery, 0); sQuery.setFacet(true); sQuery.add("facet.pivot", "newsType,property");//根据这两维度来分组查询 sQuery.setQuery(para); QueryResponse response = solrServer.query(sQuery,SolrRequest.METHOD.POST); NamedList
> namedList = response.getFacetPivot(); System.out.println(namedList);//底下为啥要这样判断,把这个值打印出来,你就明白了 if(namedList != null){ List pivotList = null; for(int i=0;i fieldList = pivot.getPivot(); if(fieldList != null){ for(PivotField field:fieldList){ int proValue = (Integer) field.getValue(); int count = field.getCount(); if(proValue == 1){ pos = count; }else{ neg = count; } } } dto.setPositiveCount(pos); dto.setNegativeCount(neg); list.add(dto); } } } } return list; } catch (SolrServerException e) { log.error("查询solr失败", e); e.printStackTrace(); } finally{ solrServer.shutdown(); solrServer = null; } return list; } namedList打印结果:{newsType,property=[newsType:8 [4260] [property:1 [3698] null, property:0 [562] null], newsType:1 [1507] [property:1 [1389] null, property:0 [118] null], newsType:2 [1054] [property:1 [909] null, property:0 [145] null], newsType:6 [715] [property:1 [581] null, property:0 [134] null], newsType:4 [675] [property:1 [466] null, property:0 [209] null], newsType:3 [486] [property:1 [397] null, property:0 [89] null], newsType:7 [458] [property:1 [395] null, property:0 [63] null], newsType:5 [289] [property:1 [263] null, property:0 [26] null], newsType:9 [143] [property:1 [138] null, property:0 [5] null]]}这下应该明白了。写到这里,突然想到一个,所有的分组查询统计,不管是一个维度两个维度都可以使用face.pivot来统计,不错的东东。